Tugas Besar: Kontrol Lift

        

[menuju akhir]

 

1.     Tujuan [kembali]

a.      Mempelajari rangkain Kontrol Lift

b.      Mempelajari simulasi Kontrol Lift

c.   Mempelajari prinsip kerja Kontrol Lift


       2. Alat dan Bahan[kembali]

        A. Alat

a. Power Suply



Power Supply atau dalam bahasa Indonesia disebut dengan Catu Daya adalah suatu alat listrik yang dapat menyediakan energi listrik untuk perangkat listrik ataupun elektronika lainnya.

B. Multimeter



Difungsikan guna mengukur besarnya tegangan listrik yang terdapat dalam suatu rangkaian listrik. Dimana, untuk penyusunannya dilakukan secara paralel sesuai pada lokasi komponen yang sedang diukur.

C.  Battery





                  Spesifikasi Battery:

                        Klasifikasi: Alkaline

Sistem Kimia: Zinc-Manganese Dioxide (Zn / MnO2)

Penunjukan: ANSI 1604A, IEC-6LF22 atau 6LR61

Tegangan Nominal: 9.0 volt

Suhu Operasi: -18 ° C hingga 55 ° C

Berat Khas: 45 gram

Volume Umum: 21 sentimeter kubik

Shelf Life: 5 tahun pada 21 ° C

Terminal: Jepretan Miniatur

 

                   Konfigurasi Battery:


 D. Generator DC


Generator DC atau generator arus searah (DC) adalah salah satu jenis mesin listrik, dan fungsi utama mesin generator DC adalah mengubah energi mekanik menjadi listrik DC Proses perubahan energi menggunakan prinsip gaya gerak listrik yang diinduksi secara energi.


        B. Bahan

a.      Load Cell

    (model 1263)



            Spesifikasi

        • Capacities 50–635 kg

        • Aluminum construction

        • Single-point 600 x 600 mm platform

        • OIML R60 approved

        • IP66 protection

        • Available with metric threads



 

b.       GP2D12



Spesifikasi GP2D12 :

                • Analog output

                • Effective Range: 10 to 80 cm

                • LED pulse cycle duration: 32 ms

                • Typical response time: 39 ms

                • Typical start up delay: 44 ms

                • Average current consumption: 33 mA

                • Detection area diameter @ 80 cm: 6 cm


                         Konfigurasi GP2d12:




 

c.      2N2222

(Bipolar Transistor Primitive)



 

    Spesifikasi dari NPN :

 


                             Konfigurasi NPN :



            d. Relay

           



               Spesifikasi Relay:

 


               Konfigurasi relay:




           

           




 

e. Resistor



 

     Spesifikasi Resistor:



 

   Konfigurasi Resistor:


            f. LED

 

               Spesifikasi LED:

 

               Konfigurasi LED:

                       




 

g.      Ground


        
               h. Opamp

                    Spesifikasi Opamp

1.      Beragam tegangan suplai

2.      Dapat bekerja dari catu daya tunggal

3.      Dua penguat operasional yang dioperasikan secara individual

4.      Gangguan kebisingan rendah di antara op-amp

5.      Lebar Bandwidth (Penguatan Persatuan): 1 MHz

6.      Penguatan Tegangan DC Besar: 100 dB

7.      Tegangan Offset Input Rendah: 2 mV

8.      Rentang tegangan mode umum masukan termasuk arde

9.      Rentang tegangan input diferensial sama dengan tegangan catu daya

10.  Kompensasi Frekuensi Internal

11.  Operasi Pasokan Tunggal: +3,0 V hingga +32 V.

12.  Operasi Pasokan Ganda: + 16V dan -16V

13.  Pembuangan Arus Pasokan Sangat Rendah (500µA)

14.  Suhu pengoperasian: -25ºC hingga 85ºC

15.  Total disipasi daya: 830mW




                
                i Motor DC


           

                 Spesifikasi Motor DC




                 Konfigurasi motor DC:


                 j Sensor Infrared




      Spesifikasi dari Sensor Infrared :

            ·         5VDC Tegangan operasi

            ·         Pin I / O memenuhi standar 5V dan 3.3V

            ·         Rentang: Hingga 20cm

            ·         Rentang penginderaan yang dapat disesuaikan

            ·         Sensor Cahaya Sekitar bawaan

            ·         Arus suplai 20mA

            ·         Lubang pemasangan

 

Konfigurasi Sensor Infrared  :





           

               k. Touch Sensor
                Spesifikasi Touch Sensor
                     Sentuhan kapasitif TTP223 on-board pada IC induksi ikatan tunggal;

                           Indikator level dewan;

                           Tegangan kerja: 2,0 V hingga 5,5 V;

                           Ukuran papan PCB: 29mm x 16mm.

             L. Flame Snsor

      Spesifikasi dari Flame sensor :   

·         Mendeteksi nyala api atau sumber cahaya dengan panjang gelombang dalam kisaran 760nm-1100 nm

·         Jarak deteksi: 20cm (4.8V) ~ 100cm (1V)

·         Sudut deteksi sekitar 60 derajat, sensitif terhadap spektrum nyala.

·         Chip komparator LM393 membuat pembacaan modul menjadi stabil.

·         Jangkauan deteksi yang dapat disesuaikan.

·         Tegangan operasi 3.3V-5V

·         Output Digital dan Analog

DO keluaran sakelar digital (0 dan 1)

AO Output tegangan analog

·         Indikator daya dan indikator keluaran sakelar digital

 

Konfigurasi Flame Sensor :



    M. Gerbang NOT 7404



A. Spesifikasi

B. Konfigurasi Pin

We have numbered the NOT Gates by 1, 2, 3, 4, 5, 6.

Pin 1: The pin 1 is the input for 1st NOT Gate.

Pin 2: Pin 2 is the output of 1st NOT Gate.

Pin 3: Pin 3 is connected to the input of the 2nd NOT Gate.

Pin 4: Pin 4 is the output of the 2nd NOT Gate.

Pin 5: Pin 5 is connected to the input of the 3rd NOT Gate.

Pin 6: Pin 6 is connected to the output terminal of the 3rd NOT Gate.

Pin 7: Pin 7 is the ground pin, it is used to provide power supply to the IC.

Pin 8: It is the output pin of the 4th Gate.

Pin 9: It provides the input pin for the 4th Gate.

Pin 10: Output of the 5th Gate is connected to the pin 10

Pin 11: Input of the 5th Gate.

Pin 12: It is connected to the output of the 6th Gate.

Pin 13: The pin 13 is connected to the input of 6th Gate.

Pin 14: It is the Vcc terminal of the IC, it is used to provide the power supply to the IC chip.


N. POT- HG


A. Spesifikasi
  • Type: Rotary a.k.a Radio POT
  • Available in different resistance values like 500Ω, 1K, 2K, 5K, 10K, 22K, 47K, 50K, 100K, 220K, 470K, 500K, 1 M. 
  • Power Rating: 0.3W
  • Maximum Input Voltage: 200Vdc
  • Rotational Life: 2000K cycles

B. Konfigurasi PIN

Pin No.

Pin Name

Description

1

Fixed End

This end is connected to one end of the resistive track

2

Variable End

This end is connected to the wiper, to provide variable voltage

3

Fixed End

This end is connected to another end of the resistive track

                 Konfigurasi potentiometer:


O. 7 Segment Anoda

A. Spesifikasi

  • Available in two modes Common Cathode (CC) and Common Anode (CA)
  • Available in many different sizes like 9.14mm,14.20mm,20.40mm,38.10mm,57.0mm and 100mm (Commonly used/available size is 14.20mm)
  • Available colours: White, Blue, Red, Yellow and Green (Res is commonly used)
  • Low current operation
  • Better, brighter and larger display than conventional LCD displays.
  • Current consumption : 30mA / segment
  • Peak current : 70mA

B. Konfigurasi pin

Pin Number

Pin Name

Description

1

e

Controls the left bottom LED of the 7-segment display

2

d

Controls the bottom most LED of the 7-segment display

3

Com

Connected to Ground/Vcc based on type of display

4

c

Controls the right bottom LED of the 7-segment display

5

DP

Controls the decimal point LED of the 7-segment display

6

b

Controls the top right LED of the 7-segment display

7

a

Controls the top most LED of the 7-segment display

8

Com

Connected to Ground/Vcc based on type of display

9

f

Controls the top left LED of the 7-segment display

10

g

Controls the middle LED of the 7-segment display


P. Decoder (IC 7447)

A. Spesifikasi

  • has a broader Voltage range
  • A variety of operating conditions
  • internal pull-ups ensure you don't need external resistors
  • Four input lines and seven output lines
  • input clamp diode hence no need for high-speed termination
  • comes with open collector output 

B. Konfigurasi pin:

Data Sheet Decoder:

 

    Q. 74LS139






IC 74LS139 merupakan ic decoder yang terdiri dari 2 input dan 4 

Fitur:-

• Dirancang khusus untuk kecepatan tinggi: Dekoder memori Sistem transmisi data

• 74LS139 berisi dua decoder/demultiplexer 2-ke-4-baris yang sepenuhnya independen

• Schottky dijepit untuk kinerja tinggi

• Penundaan propagasi tipikal (3 level logika) adalah 21 ns

• Disipasi daya tipikal adalah 34 mW

 TABEL KEBENARAN



R. 6A10




Fitur 6A10
-Biaya rendah
-Kebocoran rendah
-Penurunan tegangan maju rendah
-Kemampuan arus tinggi
-Kemampuan arus lonjakan tinggi

6A10 Specification

Diode TypeRectifier Diode
ApplicationGeneral Purpose
Diode Element MaterialSilicon
Forward Voltage-Max (VF)0.95 V
Non-rep Pk Forward Current-Max250.0 A
Operating Temperature-Max150.0 Cel
Operating Temperature-Min-65.0 Cel
Output Current-Max6.0 A
Rep Pk Reverse Voltage-Max50 V
Reverse Current-Max10.0 µA
Buzzer


Buzzer berkualitas tinggi dengan spesifikasi:
  • Tegangan kerja: 3v-12v DC.
  • Resistansi dalam: 16 ohm (16R)
  • Ukuran: dia 12mm, tebal 8.5mm (12085)
  • Kekuatan suara: 80-85 dB.
  • Warna: hitam.
 

       3. Dasar Teori [kembali]

 

a.      Load cell

Load Cell adalah alat electromekanik yang biasa disebut Transducer, yaitu gaya yang bekerja berdasarkan prinsip deformasi sebuah material akibat adanya tegangan mekanis yang bekerja, kemudian merubah gaya mekanik menjadi sinyal listrik.

Simbol load cell di proteus:



Respon sesnor:


b.       GP2D12

Sharp GP2D12 adalah sensor jarak analog yang menggunakan infrared untuk mendeteksi jarak antara 10 cm sampai 80 cm. GP2D12 mengeluarkan output voltase non-linear dalam hubungannya dengan jarak objek dari sensor dan menggunakan interface analog to digital converter (ADC).

Sensor Sharp GP2D12 dapat mengukur jarak halangan pada daerah 10 – 80 cm dengan memanfaatkan pemancaran dan penerimaan gelombang infra merah sebagai media untuk mengestimasi jarak. Penggunaan sperktrum infra merah menyebabkan sensor ini tidak mudah terganggu dengan keberadaan cahaya tampak dari lingkungan karena memiliki daerah spektrum yang berbeda.

Simbol GP2D12 di proteus :





                Respon sesnor:




c.      NPN

Transistor NPN adalah transistor bipolar yang menggunakan arus listrik kecil dan tegangan positif pada terminal Basis untuk mengendalikan aliran arus dan tegangan yang lebih besar dari Kolektor ke Emitor.

Rumus dari Transitor adalah :

hFE = iC/iB

dimana, iC = perubahan arus kolektor 

iB = perubahan arus basis 

hFE = arus yang dicapai

 

Simbol NPN di proteus :


        

            d. Relay

        Relay adalah suatu peranti yang bekerja berdasarkan elektromagnetik untuk menggerakan sejumlah kontaktor yang tersusun atau sebuah saklar elektronis yang dapat dikendalikan dari rangkaian elektronik lainnya dengan memanfaatkan tenaga listrik sebagai sumber energinya. Kontaktor akan tertutup (menyala) atau terbuka (mati) karena efek induksi magnet yang dihasilkan kumparan (induktor) ketika dialiri arus listrik. Berbeda dengan saklar, pergerakan kontaktor (on atau off) dilakukan manual tanpa perlu arus listrik.

   
Kapasitas Pengalihan Maksimum:

      Simbol Relay di Proteus:

           

            e. Battery

Baterai (Battery) adalah sebuah sumber energi yang dapat merubah energi kimia yang disimpannya menjadi energi listrik yang dapat digunakan seperti perangkat elektronik. Hampir semua perangkat elektronik yang portabel seperti handphone, laptop, dan maianan remote control menggunakan baterai sebagai sumber listriknya. Dengan adanya baterai, sehingga tidak perlu menyambungkan kabel listrik ke terimanal untuk dapat mengaktifkan perangkat elektronik kita sehingga dapat dengan mudah dibawa kemana-mana. Setiap baterai terdiri dari terminal positif (Katoda) dan terminal negatif (Anoda) serta elektrolit yang berfungsi sebagai penghantar. Output arus listrik dari baterai adalah arus searah atau disebut juga dengan arus DC (Direct Current). Pada umumnya, baterai terdiri dari 2 jenis utama yakni baterai primer yang hanya dapat sekali pakai (single use battery) dan baterai sekunder yang dapat diisi ulang (rechargeable battery).

Simbol battery di proteus:      



f. Resistor

Resistor adalah komponen elektronika yang berfungsi untuk menghambat atau membatasi aliran listrik yang mengalir dalam suatu rangkain elektronika. Sebagaimana fungsi resistor yang sesuai namanya bersifat resistif dan termasuk salah satu komponen elektronika dalam kategori komponen pasif. Satuan atau nilai resistansi suatu resistor di sebut Ohm dan dilambangkan dengan simbol Omega (Ω). Sesuai hukum Ohm bahwa resistansi berbanding terbalik dengan jumlah arus yang mengalir melaluinya. Selain nilai resistansinya (Ohm) resistor juga memiliki nilai yang lain seperti nilai toleransi dan kapasitas daya yang mampu dilewatkannya. Semua nilai yang berkaitan dengan resistor tersebut penting untuk diketahui dalam perancangan suatu rangkaian elektronika oleh karena itu pabrikan resistor selalu mencantumkan dalam kemasan resistor tersebut.

Rumus Resistor:

Seri : Rtotal = R1 + R2 + R3 + ….. + Rn

Dimana :
Rtotal = Total Nilai Resistor
R1 = Resistor ke-1
R2 = Resistor ke-2
R3 = Resistor ke-3
Rn = Resistor ke-n

Paralel: 1/Rtotal = 1/R1 + 1/R2 + 1/R3 + ….. + 1/Rn

Dimana :
Rtotal = Total Nilai Resistor
R1 = Resistor ke-1
R2 = Resistor ke-2
R3 = Resistor ke-3
Rn = Resistor ke-n

 

 

Simbol Resistor:


            g.  LED

LED atau singkatan dari Light Emitting Diode adalah salah satu komponen elektronik yang tidak asing lagi di kehidupan manusia saat ini. LED saat ini sudah banyak dipakai, seperti untuk penggunaan lampu permainan anak-anak, untuk rambu-rambu lalu lintas, lampu indikator peralatan elektronik hingga ke industri, untuk lampu emergency, untuk televisi, komputer, pengeras suara (speaker), hard disk eksternal, proyektor, LCD, dan berbagai perangkat elektronik lainnya sebagai indikator bahwa sistem sedang berada dalam proses kerja, dan biasanya berwarna merah atau kuning. LED ini banyak digunakan karena komsumsi daya yang dibutuhkan tidak terlalu besar dan beragam warna yang ada dapat memperjelas bentuk atau huruf yang akan ditampilkan. dan banyak lagi

Pada dasarnya LED itu merupakan komponen elektronika yang terbuat dari bahan semi konduktor jenis dioda yang mampu memencarkan cahaya. LED merupakan produk temuan lain setelah dioda. Strukturnya juga sama dengan dioda, tetapi belakangan ditemukan bahwa elektron yang menerjang sambungan P-N. Untuk mendapatkna emisi cahaya pada semikonduktor, doping yang pakai adalah galium, arsenic dan phosporus. Jenis doping yang berbeda menghasilkan warna cahaya yang berbeda pula.

   Rumus mencari resistor pada LED:

            R = (VS – VL) / I

Dimana :
R   = Nilai Resistor yang diperlukan (dalam Ohm (Ω))
VS = Tegangan Input (dalam Volt (V))
VL = Tegangan LED (dalam Volt (V))
I    = Arus Maju LED (dalam Ampere (A))

                 Simbol LED di Proteus:



h.      Ground

adalah suatu sistem instalasi listrik yang bisa meniadakan beda potensial sebagai pelepasan muatan listrik berlebih pada suatu instalasi listrik dengan cara mengalirkannya ke tanah sehingga istilah sehari hari yang sering digunakan yaitu pentanahan atau arde.

Simbol ground di proteus :


i.      Opamp

    Operational Amplifier atau lebih dikenal dengan istilah Op-Amp adalah salah satu dari bentuk IC Linear yang berfungsi sebagai Penguat Sinyal listrik. Sebuah Op-Amp terdiri dari beberapa Transistor, Dioda, Resistor dan Kapasitor yang terinterkoneksi dan terintegrasi sehingga memungkinkannya untuk menghasilkan Gain (penguatan) yang tinggi pada rentang frekuensi yang luas.

                 Rangkaian detektor ada 2 macam yaitu:

1.                         Detektor inverting
a.     Dengan Vref = 0 Volt
Rangkaian detektor inverting dengan tegangan input Vi berupa gelombang segitiga dan tegangan referensi Vref = 0 Volt adalah seperti gambar 

gambar Bentuk gelombang input dan gelombang output

Adapun kurva karakteristik Input-Ouput (I-O) adalah seperti gambar dibawah ini.



 Dengan Vi > 0 (artinya Vi > 65 µ Volt untuk rangkaian detektor dengan ±Vs = ±15 Volt) maka Vo = -Vsat dan sebaliknya bila Vi < 0 (artinya Vi < -65 µ Volt untuk rangkaian detektor dengan ±Vs = ±15 Volt) maka Vo = +Vsat.




b.     Dengan Vref = bertegangan positif
Rangkaian detektor inverting dengan tegangan input Vi berupa gelombang segitiga dan tegangan referensi Vref  > 0 Volt adalah seperti gambar .
gambar Rangkaian detektor inverting



Gambar  Bentuk gelombang input dan gelombang output



Gambar  kurva karakteristik I-O




c.     Dengan Vref = bertegangan negatif
Rangkaian detektor inverting dengan tegangan input Vi berupa gelombang segitiga dan tegangan referensi Vref  < 0 .

2.     Detektor non inverting
a.     Dengan Vref = 0 Volt
Rangkaian detektor non inverting dengan tegangan input Vi berupa gelombang segitiga dan tegangan referensi Vref = 0 Volt .




b.     Dengan Vref = bertegangan positif
Rangkaian detektor non inverting dengan tegangan input Vi berupa gelombang segitiga dan tegangan referensi Vref > 0 Volt 




c.     Dengan Vref = bertegangan negatif
Rangkaian detektor non inverting dengan tegangan input Vi berupa gelombang segitiga dan tegangan referensi Vref < 0 Volt
 

Simbol opamp di proteus:


            j. Motor DC

Motor DC adalah motor listrik yang memerlukan suplai tegangan arus searah pada kumparan medan untuk diubah menjadi energi gerak mekanik. Kumparan medan pada motor dc disebut stator (bagian yang tidak berputar) dan kumparan jangkar disebut rotor (bagian yang berputar). Motor arus searah, sebagaimana namanya, menggunakan arus langsung yang tidak langsung/directunidirectional.

Motor DC adalah piranti elektronik yang mengubah energi listrik menjadi energi mekanik berupa gerak rotasi. Pada motor DC terdapat jangkar dengan satu atau lebih kumparan terpisah. Tiap kumparan berujung pada cincin belah (komutator). Dengan adanya insulator antara komutator, cincin belah dapat berperan sebagai saklar kutub ganda (double pole, double throw switch). Motor DC bekerja berdasarkan prinsip gaya Lorentz, yang menyatakan ketika sebuah konduktor beraliran arus diletakkan dalam medan magnet, maka sebuah gaya (yang dikenal dengan gaya Lorentz) akan tercipta secara ortogonal diantara arah medan magnet dan arah aliran arus. Kecepatan putar motor DC (N) dirumuskan dengan Persamaan berikut.



Simbol motor DC di proteus:



             k. Sensor Infrared

      Sensor Infrared adalah komponen elektronika yang dapat mendeteksi benda ketika cahaya infra merah terhalangi oleh benda. Sensor infared terdiri dari led infrared sebagai pemancar sedangkan pada bagian penerima biasanya terdapat foto transistor, fotodioda, atau inframerah modul yang berfungsi untuk menerima sinar inframerah yang dikirimkan oleh pemancar.

                Respon Sensor:




Grafik menunjukkan hubungan antara resistansi dan jarak potensial untuk sensitivitas rentang antara pemancar dan penerima inframerah. Resistor yang digunakan pada sensor mempengaruhi intensitas cahaya inframerah keluar dari pemancar. Semakin tinggi resistansi yang digunakan, semakin pendek jarak IR Receiver yang mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih rendah dari IR Transmitter. Sementara semakin rendah resistansi yang digunakan, semakin jauh jarak IR Receiver mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih tinggi dari IR Transmitter.


                  Logo Sensor Infrared di proteus: 




                

                 M.      Touch Sensor

    Touch Sensor atau Sensor Sentuh adalah sensor elektronik yang dapat mendeteksi sentuhan. Sensor Sentuh ini pada dasarnya beroperasi sebagai sakelar apabila disentuh, seperti sakelar pada lampu, layar sentuh ponsel dan lain sebagainya. Sensor Sentuh ini dikenal juga sebagai Sensor Taktil (Tactile Sensor). Seiring dengan perkembangan teknologi, sensor sentuh ini semakin banyak digunakan dan telah menggeser peranan sakelar mekanik pada perangkat-perangkat elektronik.

Simbol Touch Sensor:



        Grafik 


 

N. Flame Sensor

Flame sensor merupakan sensor yang mempunyai fungsi sebagai pendeteksi nyala api yang dimana api tersebut memiliki panjang gelombang antara 760nm – 1100nm. Sensor ini menggunakan infrared sebagai tranduser dalam mensensing kondisi nyala api.

        

                  Logo Flame sensor di proteus: 


 


    O. Gerbang NOT (IC 7404)

 


Gerbang NOT atau disebut juga "NOT GATE" atau Inverter (Gerbang Pembalik) adalah jenis gerbang logika yang hanya memiliki satu input (Masukan) dan satu output (keluaran). Dikatakan Inverter (gerbang pembalik) karena gerbang ini akan menghasilkan nilai ouput yang berlawanan dengan nilai inputnya . Untuk lebih jelasnya perhatikan simbol dan tabel kebenaran gerbang NOT berikut.



Pada gerbang logika NOT, simbol yang menandakan operasi gerbang logika NOT adalah tanda minus (-) diatas variabel, perhatikan gambar diatas.

Perhatikan tabel kebenaran gerbang NOT. Cara cepat untuk mengingat tabelnya adalah dengan mengingat pernyataan berikut. "Gerbang NOT akan menghasilkan output (keluaran) logika 1 bila variabel input (masukan) bernilai logika 0" sebalikanya "Gerbang NOT akan menghasilkan keluaran logika 0 bila input (masukan) bernilai logika 1"


        p. Decoder (IC 7447)


    IC BCD 7447 merupakan IC yang bertujuan mengubah data BCD (Binary Coded Decimal) menjadi suatu data keluaran untuk seven segment. IC 7447 yang bekerja pada tegangan 5V ini khusus untuk menyalakan seven segment dengan konfigurasi common anode. Sedangkan untuk menyalakan tampilan seven segment yang bekerja pada konfigurasi common cathode menggunakan IC BCD 7448. 

    IC ini sangat membantu untuk meringkas masukan seven segmen dengan jumlah 7 pin, sedangkan jika menggunakan BCD cukup dengan 4 bit masukan. IC BCD bisa juga disebut dengan driver seven segment. Berikut konfigurasi Pin IC 7447.

Konfigurasi Pin Decoder:

a. Pin Input IC BCD, memiliki fungsi sebagai masukan IC BCD yang terdiri dari 4 Pin, nama     pin masukan BCD dilangkan dengan huruf kapital yaitu A, B, C  dan D. Pin input berkeja    dengan logika High=1.

b. Pin Ouput IC BCD, memiliki fungsi untuk mengaktifkan seven segmen sesuai data yang    diolah dari pin input. Pin output berjumlah 7 pin yang namanya dilambangkan dengan    aljabar huruf kecil yaitu, b, c, d, e, f dan g. Pin Output bekerja dengan logika low=0. Karena itulah IC 7447 digunakan untuk seven segment common anode.

c. Pin LT (Lamp Test) memiliki fungsi untuk mengaktifkan semua output menjadi aktif low,        sehingga semua led pada seven segmen menyala dan menampilkan angka 8. Pin LT akan aktif jika diberi logika low. Pin ini juga digunakan untuk mengetes kondisi LED pada seven segment.

d. Pin RBI (Ripple Blanking Input) memiliki fungsi untuk menahan data input (disable input), pin RBI akan aktif jika diberi logika low. Sehingga seluruh pin output akan berlogika High, dan seven segment tidak aktif.

e. Pin RBO (Ripple blanking Output) memiliki fungsi untuk menahan data output (disable output), pin RBO ini akan aktif jika diberikan logika Low. Sehingga seluruh pin output akan berlogika High, dan seven segment tidak aktif.

Pada aplikasi IC dekoder 7447, ketiga pin (LT, RBI dan RBO) harus diberi logika HIGH=1 agar tidak aktif. Baik IC 7447 atau 7448 pada bagian output perlu dipasang resistor untuk membatasi arus yang keluar sehingga led pada seven segment bekerja secara optimal. Berikut ini rangkaian IC dekoder 7448 untuk konfigurasi seven segment common cathode.


Q. 7 Segment Anoda

   

    Seven segment merupakan bagian-bagian yang digunakan untuk menampilkan angka atau bilangan decimal. Seven segment tersebut terbagi menjadi 7 batang LED yang disusun membentuk angka 8 dengan menggunakan huruf a-f yang disebut DOT MATRIKS. Setiap segment ini terdiri dari 1 atau 2 LED (Light Emitting Dioda). Seven segment bisa menunjukan angka-angka desimal serta beberapa bentuk tertentu melalui gabungan aktif atau tidaknya LED penyususnan dalam seven segment.

    Supaya memudahkan penggunaannnya biasanya memakai sebuah sebuah seven segment driver yang akan mengatur aktif atau tidaknya led-led dalam seven segment sesuai dengan inputan biner yang diberikan. Bentuk tampilan modern disusun sebagai metode 7 bagian atau dot matriks. Jenis tersebut sama dengan namanya, menggunakan sistem tujuh batang led yang dilapis membentuk angka 8 seperti yang ditunjukkan pada gambar di atas. Huruf yang dilihatkan dalam gambar itu ditetapkan untuk menandai bagian-bagian tersebut.

    Dengan menyalakan beberapa segmen yang sesuai, akan dapat diperagakan digit-digit dari 0 sampai 9, dan juga bentuk huruf A sampai F (dimodifikasi). Sinyal input dari switches tidak dapat langsung dikirimkan ke peraga 7 bagian, sehingga harus menggunakan decoder BCD (Binary Code Decimal) ke 7 segmen sebagai antar muka. Decoder tersebut terbentuk  dari pintu-pintu akal yang masukannya berbetuk digit BCD dan keluarannya berupa saluran-saluran untuk mengemudikan tampilan 7 segmen.

Tabel Pengaktifan Seven Segment Display


r. 74LS139

74LS139 terdiri dari dua dekoder dua baris ke empat baris terpisah dalam satu paket. Input active-low enable dapat digunakan sebagai jalur data dalam aplikasi demultiplexing. Semua dekoder/demultiplexer ini memiliki input buffer penuh, menyajikan hanya satu beban yang dinormalisasi ke sirkuit penggeraknya. Semua input dijepit dengan dioda Schottky berperforma tinggi untuk menekan dering garis dan menyederhanakan desain sistem.


Sirkuit yang dijepit Schottky ini dirancang untuk digunakan dalam penguraian kode memori atau aplikasi perutean data berkinerja tinggi, yang membutuhkan waktu tunda propagasi yang sangat singkat. Dalam sistem memori berkinerja tinggi, dekoder ini dapat digunakan untuk meminimalkan efek dekode sistem. Ketika digunakan dengan memori berkecepatan tinggi, waktu tunda dari dekoder ini biasanya lebih kecil dari waktu akses memori biasa. Ini berarti bahwa penundaan sistem efektif yang diperkenalkan oleh dekoder dapat diabaikan.



  • N. Dioda
Dioda adalah komponen elektronika yang terdiri dari dua kutub dan berfungsi menyearahkan arus. Komponen ini terdiri dari penggabungan dua semikonduktor yang masing-masing diberi doping (penambahan material) yang berbeda, dan tambahan material konduktor untuk mengalirkan listrik.Dioda memiliki simbol sebagai berikut :
Gambar Simbol Dioda

Cara Kerja Dioda

Secara sederhana, cara kerja dioda dapat dijelaskan dalam tiga kondisi, yaitu kondisi tanpa tegangan (unbiased), diberikan tegangan positif (forward biased), dan tegangan negatif (reverse biased).

A. Kondisi tanpa tegangan

Pada kondisi tidak diberikan tegangan akan terbentuk suatu perbatasan medan listrik pada daerah P-N junction. Hal ini terjadi diawali dengan proses difusi, yaitu bergeraknya muatan elektro dari sisi n ke sisi p. Elektron-elektron tersebut akan menempati suatu tempat di sisi p yang disebut dengan holes. Pergerakan elektron-elektron tersebut akan meninggalkan ion positif di sisi n, dan holes yang terisi dengan elektron akan menimbulkan ion negatif di sisi p. Ion-ion tidak bergerak ini akan membentuk medan listrik statis yang menjadi penghalang pergerakan elektron pada dioda.

cara kerja dioda

B. Kondisi tegangan positif (Forward-bias)

Pada kondisi ini, bagian anoda disambungkan dengan terminal positif sumber listrik dan bagian katoda disambungkan dengan terminal negatif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Ion-ion negatif akan tertarik ke sisi anoda yang positif, dan ion-ion positif akan tertarik ke sisi katoda yang negatif. Hilangnya penghalang-penghalang tersebut akan memungkinkan pergerakan elektron di dalam dioda, sehingga arus listrik dapat mengalir seperti pada rangkaian tertutup.

dioda tanpa tegangan

C. Kondisi tegangan negatif (Reverse-bias)

Pada kondisi ini, bagian anoda disambungkan dengan terminal negatif sumber listrik dan bagian katoda disambungkan dengan terminal positif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Pemberian tegangan negatif akan membuat ion-ion negatif tertarik ke sisi katoda (n-type) yang diberi tegangan positif, dan ion-ion positif tertarik ke sisi anoda (p-type) yang diberi tegangan negatif. Pergerakan ion-ion tersebut searah dengan medan listrik statis yang menghalangi pergerakan elektron, sehingga penghalang tersebut akan semakin tebal oleh ion-ion. Akibatnya, listrik tidak dapat mengalir melalui dioda dan rangkaian diibaratkan menjadi rangkaian terbuka.

kondisi tegangan negatif


Buzzer

Buzzer adalah sebuah komponen elektronika yang dapat mengubah sinyal listrik menjadi getaran suara. Buzzer ini biasa dipakai pada sistem alarm. Juga bisa digunakan sebagai indikasi suara. Buzzer adalah komponen elektronika yang tergolong tranduser. Sederhananya buzzer mempunyai 2 buah kaki yaitu positive dan negative. Untuk menggunakannya secara sederhana kita bisa memberi tegangan positive dan negative 3 - 12V.


Cara Kerja Buzzer pada saat aliran listrik atau tegangan listrik yang mengalir ke rangkaian yang menggunakan piezoeletric tersebut. Piezo buzzer dapat bekerja dengan baik dalam menghasilkan frekwensi di kisaran 1 - 6 kHz hingga 100 kHz.

Buzzer ini bisa kita coba tanpa menggunakan board arduino yang diprogram. Jadi kita hanya beri inputan tegangan 3 - 12 V (Tegangan Kerja Buzzer). Buzzer mempunyai nilai impedansi sama seperi speaker. Jika nilai impedansi kurang dari 10 ohm kita bisa langsung menghubungkan ke arduino dan jika impedansi yang lebih besar kita akan membutuhkan driver untuk mengangkat arus yang masuk ke buzzer. Kita bisa menggunakan rangkaian transistor. 

Seperti gambar diatas kaki positive sambungkan pada batere kutub positive dan kaki negative di sambungkan pada batere kutub negative. Maka buzzer langsung berbunyi "beep beep". Kita juga bisa menggunakan rangkaian diatas untuk mengetes apakah buzzer berfungsi atau tidak.
 

  • Voltmeter
Volt meter DC merupakan alat ukur yang berfungsi untuk mengetahui beda potensial tegangan DC antara 2 titik pada suatu beban listrik atau rangkaian elektronika.

  • Power Supply
    Power supply atau pencatu daya adalah sebuah alat elektronik yang berfungsi memberikan tegangan dan arus listrik pada komponen-komponen lainnya. Pada dasarnya power supply membutuhkan sumber listrik yang kemudian diubah menjadi sumber daya yang dibutuhkan oleh berbagai perangkat elektronik lainnya. Arus listrik yang disalurkan oleh power supply ini adalah jenis arus bolak-balik (AC). Namun karena kelebihan dari power supply ini, maka alat ini juga dapat mengubah arus bolak-balik (AC) menjadi arus searah (DC). Power supply memiliki simbol sebagai berikut :
Gambar simbol power supply


  • Generator DC

Generator DC merupakan sebuah perangkat mesin listrik dinamis yang mengubah energi mekanis menjadi energi listrik. Generator DC menghasilkan arus DC / arus searah. Generator DC dibedakan menjadi beberapa jenis berdasarkan dari rangkaian belitan magnet atau penguat eksitasinya terhadap jangkar (anker), jenis generator DC yaitu:
  1. Generator penguat terpisah
  2. Generator shunt
  3. Generator kompon  
Konstruksi Generator DC 
Pada umumnya generator DC dibuat dengan menggunakan magnet permanent dengan 4-kutub rotor, regulator tegangan digital, proteksi terhadap beban lebih, starter eksitasi, penyearah, bearing dan rumah generator atau casis, serta bagian rotor. Gambar 1 menunjuk-kan gambar potongan melintang konstruksi generator DC.
trikueni-desain-sistem.blogspot.com/2014/08/prinsip-kerja-generator-DC.html
Konstruksi Generator DC

Generator DC terdiri dua bagian, yaitu stator, yaitu bagian mesin DC yang diam, dan bagian rotor, yaitu bagian mesin DC yang berputar. Bagian stator terdiri dari: rangka motor, belitan stator, sikat arang, bearing dan terminal box. Sedangkan bagian rotor terdiri dari: komutator, belitan rotor, kipas rotor dan poros rotor.
trikueni-desain-sistem.blogspot.com/2014/08/prinsip-kerja-generator-DC.html
Struktur Genertor DC
                                
Bagian yang harus menjadi perhatian untuk perawatan secara rutin adalah sikat arang yang akan memendek dan harus diganti secara periodic / berkala. Komutator harus dibersihkan dari kotoran sisa sikat arang yang menempel dan serbuk arang yang mengisi celah-celah komutator, gunakan amplas halus untuk membersihkan noda bekas sikat arang.

Prinsip Kerja generator DC
Prinsip kerja suatu generator arus searah berdasarkan hukum Faraday : 
trikueni-desain-sistem.blogspot.com/2014/08/prinsip-kerja-generator-DC.html
Dengan lain perkataan, apabila suatu konduktor memotong garis-garis fluksi magnetik yang berubah-ubah, maka GGL akan dibangkitkan dalam konduktor itu. Jadi syarat untuk dapat dibangkitkan GGL adalah : 
  • harus ada konduktor ( hantaran kawat ) 
  • harus ada medan magnetik
  • harus ada gerak atau perputaran dari konduktor dalam medan, atau ada fluksi yang berubah yang memotong konduktor itu.
trikueni-desain-sistem.blogspot.com/2014/08/prinsip-kerja-generator-DC.html
Prinsip Kerja Generator DC

Keterangan gambar :
  • Pada gambar Generator DC Sederhana dengan sebuah penghantar kutub tersebut, dengan memutar rotor ( penghantar ) maka pada penghantar akan timbul EMF. 
  • Kumparan ABCD terletak dalam medan magnet sedemikian rupa sehingga sisi A-B dan C-D terletak tegak lurus pada arah fluks magnet. 
  • Kumparan ABCD diputar dengan kecepatan sudut yang tetap terhadap sumbu putarnya yang sejajar dengan sisi A-B dan C-D. 
  • GGL induksi yang terbentuk pada sisi A-B dan sisi C-D besarnya sesuai dengan perubahan fluks magnet yang dipotong kumparan ABCD tiap detik sebesar :
trikueni-desain-sistem.blogspot.com/2014/08/prinsip-kerja-generator-DC.html
Untuk menentukan arah arus pada setiap saat, berlaku pada kaidah tangan kanan :
  • ibu jari : gerak perputaran 
  • jari telunjuk : medan magnetik kutub utara dan selatan 
  • jari tengah : besaran galvanis tegangan U dan arus I 
Untuk perolehan arus searah dari tegangan bolak-balik, meskipun tujuan utamanya adalah pembangkitan tegangan searah, tampak bahwa tegangan kecepatan yang dibangkitkan pada kumparan jangkar merupakan tegangan bolak-balik. Bentuk gelombang yang berubah-ubah tersebut karenanya harus disearahkan.


 

       4. Langkah-langkah [kembali]

         Buka proteus



         Siapkan komponen



         Letak dan hubungkan wire seperti pada gambar







         Masukkan file sensor



         Jalankan simulasinya


      5. Rangkaian Simulasi [kembali]




 

        6.  Prinsip Kerja Rangkaian [kembali]

Sensor GP2D12

Ketika sensor mendeteksi adanya seseorang, maka sensor akan aktif. Ketika sensor aktif,

maka arus akan mengalir dari ouput sensor menuju basis transistor. Pada transistor

menggunakan fix bias. Ketika tegangan basis pada transistor telah melebihi batas aktif

dari transistor, maka arus mengalir dari sumber DC menuju relay, kolektor, dan emiter.

Hal ini membuat switch relay berpindah.


Sensor Touch

Ketika seseorang membuka lift maka akan menekan sensor touch. Hal ini membuat sensor

Touch aktif. Arus akan keluar dari touch sensor menuju IC 74LS139 pada pin A. Maka pin

output Y1 akan aktif, dan mengalir menuju IC 7404. Lalu arus menuju basis transistor,

yang mana transiostor menggunakan fix bias. Hal ini membuat tegangan pada basis

melebihi dari tegangan minimum dari aktifnya transistor. Maka arus mengalir dari Sumber

DC meuju relay, kolektor dan emitor. Yang mana swith relay akan berpindah dan mengaktifkan

motor untuk membuka pintu lift. Dan juga ketika lift berada dilantai 2, maka lift akan turun ke lantai 1.


Sensor Touch

Ketika seseorang menutup lift maka akan menekan sensor touch. Hal ini membuat sensor

Touch aktif. Arus akan keluar dari touch sensor menuju IC 74LS139 pada pin B. Maka pin

output Y2 akan aktif, dan mengalir menuju IC 7404. Lalu arus menuju basis transistor, yang

mana transiostor menggunakan bias Transistor dengan Umpan Balik Ganda. Hal ini membuat

tegangan pada basis melebihi dari tegangan minimum dari aktifnya transistor. Maka arus mengalir

dari Sumber DC meuju relay, kolektor dan emitor. Yang mana swith relay akan berpindah dan

mengaktifkan motor untuk menutup pintu lift. 


Infrared SensorKetika pintu tertutup, maka sensor akan aktif. Ketika sensor aktif, maka arus akan mengalir

dari ouput sensor menuju basis transistor. Pada transistor menggunakan self bias. Ketika

tegangan basis pada transistor telah melebihi batas aktif dari transistor, maka arus mengalir

dari sumber DC menuju relay, kolektor, dan emiter. Hal ini membuat switch relay berpindah.

Dan membuat motor menjadi berhenti.


Opamp

Ketika beban pada lift melewati batas, maka loadcell akan aktif yang mana outoput menuju

kaki opamp non inverting. Oamp merupakan rangkaian detector. Lalu ketika Vref < Vin maka Vout

berupa Vin dan akan mengalir menuju base resisttor. dan mengaktifkan relay dan membuat LED hidup.


Flame Sensor
Ketika terdeteksi api, maka flame sensor akan aktif yang mana output menuju ke transistor. Maka dari
itu transistor aktif dan membuat relay berpindah switch. yang mana akan mengaktifkan buzzer dan LED.

         7.  Video [kembali]

 





8.  Download File [kembali]

Download html [klik]

Download Rangkaian [klik]

Download Video [klik]

Download Datasheet Load Cell [klik]

Download Datasheet Sensor Infrared [klik]

Download Datasheet GP2D12 [klik]

Download Datasheet Touch Sensor [klik]

Download Datasheet NPN Transistor [klik]

Download Datasheet 2N7000 [klik]

Download Datasheet Battery [klik]

Download Datasheet Motor DC [klik]

Download Datasheet Relay [klik]

Download Datasheet Resistor [klik]

Download Datasheet flame sensor [klik]

Download Library Sensor Infrared [klik]

Download Library Touch Sensor [klik]

Download Library flame sensor [klik]

Download Datasheet IC 74LS139 [klik]

Download Datasheet IC 7447 [klik]


 

[menuju awal]

No comments:

Post a Comment